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Abstract

Warped convolutions of operators were recently introduced in the algebraic
framework of quantum physics as a new constructive tool. It is shown here
that these convolutions provide isometric representations of Rieffel’s strict
deformations of C∗–dynamical systems with automorphic actions of R

n,
whenever the latter are presented in a covariant representation. Moreover,
the device can be used for the deformation of relativistic quantum field the-
ories by adjusting the convolutions to the geometry of Minkowski space.
The resulting deformed theories still comply with pertinent physical prin-
ciples and their Tomita–Takesaki modular data coincide with those of the
undeformed theory; but they are in general inequivalent to the undeformed
theory and exhibit different physical interpretations.
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1 Introduction

Recent advances in algebraic quantum field theory have led to purely algebraic
constructions of quantum field models on Minkowski space, both classical and
noncommutative [5,9,11–13,17,18,22–24,26,29], many of which cannot be achieved
by the standard methods of constructive quantum field theory. Some of these
models are local and free, some are local and have nontrivial S–matrices, and yet
others manifest only certain remnants of locality, though these remnants suffice to
enable the computation of nontrivial S–matrix elements.

In order to construct a quantum field model on noncommutative Minkowski
space, Grosse and one of us [17] have deformed the free quantum field in a certain
manner to find a family of theories which are Poincaré covariant and comply
with a slightly weakened version of the principle of Einstein causality (“wedge
locality”). As pointed out in [17], a completely analogous deformation can be
carried out on a free field on classical Minkowski space. In [13] two of us presented
a generalization (called a warped convolution) of that deformation which can be
applied to any Minkowski space quantum field model in any number of dimensions.
This deformation results in a family of distinct theories which are wedge–local
and covariant under the representation of the Poincaré group associated with the
initial, undeformed theory. It turns out that also the S–matrix changes under
this deformation, and the scattering is nontrivial even if the scattering of the
initial theory is trivial. When taking the free quantum field as the initial model,
this deformation coincides with that of Grosse and Lechner. It provides the first
fully consistent examples of relativistic quantum field theories on four–dimensional
Minkowski space describing nontrivial elastic scattering processes [13, 17].

Warped convolution was subsequently studied in the language of Wightman
quantum field theory in [18], where it was shown that the deformation of the
field operators can be understood as resulting in a certain deformation of the
canonical product on the Borchers–Uhlmann algebra – the algebra of test functions
canonically associated with a Wightman theory. This was the first indication that
the deformation of operators resulting from warped convolution may be equivalent
to a deformation of the operator product.

A well known example of this latter type is the strict deformation theory of
C∗–dynamical systems with an action of Rn developed by Rieffel in [28]. It was
originally introduced for the quantization of classical models. We shall show in
this paper that the warped convolution applied to any C∗–dynamical system pro-
vides a covariant representation of the corresponding deformed Rieffel algebra. In
particular, all states in a covariant representation of the initial system can be lifted
to states on the deformed algebra (compare [21, Corollary 4.4]).

In spite of this tight relation between the two deformation procedures, the
concept of warped convolution appears to be more appropriate in applications
to quantum field theory. For there one has to deal simultaneously with a mul-
titude of different deformations and to establish relations between the resulting
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operators. This can be done most conveniently in a common representation space
of the various Rieffel algebras, and such a space is provided by the warped convo-
lution procedure. Suitably adjusting the deformation parameters to the geometry
of Minkowski space, we apply the warped convolutions to quantum field theories,
as outlined in [13], and prove as well as extend the results given there. As we shall
further explain, any quantum field theory on Minkowski space can be constructed
from a (causal) Borchers triple consisting of a von Neumann algebra, a represen-
tation of the Poincaré group and a vector representing the vacuum state. The
physical constraints of causality and covariance can conveniently be expressed in
terms of a few conditions on these triples. We shall show that these properties are
preserved under a distinguished group of warped convolutions, thereby giving rise
to interesting new theories.

The article is organized as follows. In Section 2 we prove and extend the results
about warped convolution given in [13]. These extensions allow us to establish the
relation with Rieffel deformed dynamical systems. In Section 3 a restricted family
of warped convolutions is applied to Borchers triples to construct quantum field
theories in two spacetime dimensions. We show, in particular, that the Tomita–
Takesaki modular objects associated with such triples remain fixed under these
deformations. The application of the warped convolutions to general relativistic
quantum field theories in higher dimensions is discussed in Section 4. We present
there the salient results given in [13] in the framework of causal Borchers triples
and also establish further physically relevant properties of the deformed theories,
not addressed in [13]. Finally, we briefly discuss prospects for further development
of this approach in Section 5.

2 Warped Convolutions and Rieffel Deformations

We clarify here the relation between the notion of warped convolution, recently
introduced in [13], and the strict deformation of C∗–algebras established in [28] by
Rieffel. In either case one proceeds from a C∗–dynamical system (A, Rn), cf. [27].
It consists of a C∗–algebra A equipped with a strongly continuous automorphic
action of the group R

n which will be denoted by α.

In order to relate the two settings, it will be convenient to consider the system
(A, Rn) in a covariant representation. That is, we regard A as a concrete C∗–
algebra on a Hilbert space H on which the automorphisms α are implemented by
the adjoint action of a weakly continuous unitary representation U of Rn,

αx(A) = U(x)AU(x)−1 , x ∈ R
n .

As a matter of fact, this assumption imposes no significant restriction of generality.
For if the abstract algebra A can be represented faithfully on some separable
Hilbert space, then there also exists a faithful covariant representation of (A, Rn),
cf. [27, Lemma 7.4.9 and Prop. 7.4.7]. Furthermore, since the adjoint action α of
the unitary representation U can be extended to the algebra B(H) of all bounded
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operators on H, no generality will be lost when we proceed to the C∗–dynamical
system (C, Rn), where C ⊂ B(H) is the C∗–algebra of all operators on which α acts
strongly continuously. We shall then be able to restrict to suitable subalgebras A
of C as necessary.

2.1 Rieffel Deformations

We begin by considering the C∗–algebra C of all uniformly continuous bounded
functions A : Rn → B(H). The algebraic structure of C is the natural one
inherited from B(H), i.e. the algebraic operations in C are pointwise defined,

(A + B)(x) = A(x) + B(x), (AB)(x) = A(x) B(x), A
∗(x) = A(x)∗ x ∈ R

n ,

and the norm is given by1

||A|| = sup
x∈Rn

||A(x)|| .

Following Rieffel [28], we consider the subalgebra C
∞ ⊂ C of smooth (in the

norm topology) elements A, i.e. ||∂µA|| < ∞ for all multi-indices µ.2 Note that
the elements C ∈ B(H) act as multipliers on C

∞, if one identifies C with the
corresponding constant function in C

∞ (denoted by the same symbol). Clearly,
the maps (C, A) 7→ CA and (C, A) 7→ AC are norm continuous in both variables,
||CA|| ≤ ||C|| ||A|| ≥ ||AC||, and the multiplication by C commutes with the
operations of differentiation and integration on C

∞.

In the subsequent analysis we shall find it necessary to integrate the functions
x 7→ A(x). In order to handle the fact that these functions are in general not
absolutely integrable with respect to Lebesgue measure due to a lack of suitable
decay properties, we introduce mollifiers Ln : Rn → C. A convenient choice is
given by

Ln(x) = (i + x1 + · · · + xn)−1
∏

k=1,...,n

(i + xk)
−1 , x ∈ R

n .

Because of this simple form one easily verifies that (∂µLn)(x) = Nn,µ(x)Ln(x),
where Nn,µ is smooth and bounded for any multi-index µ; moreover Ln ∈ L1(Rn).
We therefore choose Ln as a universal mollifier on C

∞.

It follows from the preceding remarks that, for any multi-index µ, the functions
x 7→ ∂µ

x

(
Ln(x)A(x)

)
are Bochner integrable in B(H) with respect to the Lebesgue

measure. Moreover, applying Leibniz’s rule, one gets
∫

dx ||∂µ
x

(
Ln(x)A(x)

)
|| ≤ cn,µ ||A|||µ| , A ∈ C

∞ ,

1Risking some confusion, we use the same symbol for the norms on C and B(H).
2We use the notation µ = (µ1, . . . , µn), ∂µ

x = ∂µ1

x1
· · · ∂µn

xn
and (∂µA)(x) = ∂µ

xA(x), where
xk are the components of x with respect to a fixed orthonormal basis in R

n and ∂xk
are the

corresponding partial derivatives, k = 1, . . . n.
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where cn,µ does not depend on A, and we have introduced the norms, m ∈ N0,

||A||m =
∑

µ, |µ|≤m

||∂µ
A|| .

The following technical lemma is a basic ingredient in the subsequent discussion.
In its proof, we make use of arguments furnished by Rieffel [28].

Lemma 2.1 Let A, B ∈ C be n + 1 times continuously differentiable and let
f ∈ S(Rn × Rn) with f(0, 0) = 1.

(i) The norm limit of Bochner integrals in B(H),

lim
ε→0

(2π)−n

∫∫
dxdy f(εx, εy) e−ixy

A(x)B(y)
.
= A × B ,

exists and does not depend on f . Here xy, x, y ∈ Rn is any symmetric bilinear
form on Rn with determinant 1 or −1.

(ii) With Ln as above, there exists a polynomial u, v 7→ Pn(u, v) on Rn × Rn of
degree n + 1 in the components of u and v, respectively, such that

A × B = (2π)−n

∫∫
dxdy e−ixy Pn(∂x, ∂y) Ln(x)A(x) Ln(y)B(y) ,

where the integral is defined as a Bochner integral in B(H).

(iii) ||A × B|| ≤ cn ||A||n+1 ||B||n+1, for a universal constant cn.

(iv) Let C ∈ B(H). Then

(CA × B) = C(A × B), (A × BC) = (A × B)C,

(AC × B) = (A × CB) ,

and the linear map
C 7→ A × CB

is continuous on the unit sphere of B(H) in the strong operator topology.

Proof. (i) Crucial for the result are certain properties of the function x, y 7→ e−ixy.
Namely, for each polynomial x, y 7→ Qn(x, y) of degree n+1 in the variables x and
y, respectively, there is a corresponding polynomial Pn in the same family such
that

Qn(x, y) e−ixy = Pn(−∂x,−∂y) e−ixy ,

and vice versa. The step from the right hand side to the left hand side is easily
accomplished by differentiation; the opposite direction can likewise be established,
noticing that the Fourier transform of x, y 7→ e−ixy is again of this form. Choosing

Qn(x, y) = Ln(x)−1 Ln(y)−1, x, y ∈ R
n,
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with Ln specified above, one observes that
∫∫

dxdy f(εx, εy) e−ixy
A(x)B(y)

=

∫∫
dxdy Qn(x, y) e−ixy f(εx, εy) Ln(x)A(x) Ln(y)B(y)

=

∫∫
dxdy

(
Pn(−∂x,−∂y)) e−ixy

)
f(εx, εy) Ln(x)A(x) Ln(y)B(y)

=

∫∫
dxdy e−ixy Pn(∂x, ∂y)f(εx, εy) Ln(x)A(x) Ln(y)B(y) ,

where Pn is the polynomial corresponding to the chosen Qn. In view of the smooth-
ness and rapid decay properties of the integrands, the integrals are defined as
Bochner integrals in B(H), and the last equality is obtained by partial integra-
tion. Decomposing Pn(∂x, ∂y) into a sum of monomials of the form ∂µ

x∂ν
y with

|µ|, |ν| ≤ n + 1, performing the differentiations and taking into account the prop-
erties of Ln, one gets by an application of the dominated convergence theorem

lim
ε→0

∫∫
dxdy e−ixy Pn(∂x, ∂y)f(εx, εy) Ln(x) A(x) Ln(y)B(y)

=

∫∫
dxdy e−ixy Pn(∂x, ∂y) Ln(x)A(x) Ln(y)B(y) .

(2.1)

Note that the derivatives of x, y 7→ f(εx, εy) contain powers of ε as factors and
therefore disappear in the limit. In particular, the limit does not depend on the
choice of f .

Assertion (ii) has been established in (2.1). From this relation one also obtains
the estimate (iii), because of the properties of Ln established above.

The proof of the equalities in (iv) is another straightforward consequence of
(ii) and is therefore omitted. It remains to establish the continuity of the map.
In view of the continuity and decay properties of the functions appearing in the
representation (ii) of the product ×, the integrals underlying the definition of
A × CB can be approximated in norm, uniformly for C ∈ B(H), ||C|| ≤ 1, by
finite sums of the form

∑

µ,ν,i,k

cµ,ν,i,k (∂µ
A)(xi) C (∂ν

B)(yk) ,

where cµ.ν,i,k are constants which do not depend on C. Since the operators
(∂µA)(xi), (∂νB)(yk) are bounded, the stated continuity properties of the map
with respect to C then follow. �

Within this general setting, the Rieffel deformations of the C∗–dynamical sys-
tem (C, Rn) [28] can be presented as follows. Let C∞ ⊂ C be the ∗–algebra of
smooth elements with respect to the action of α and let Q be a real skew symmet-
ric matrix relative to the chosen bilinear form on R

n, i.e. xQy = −yQx, x, y ∈ R
n.

One then considers for A, B ∈ C∞ the functions in C
∞ given by

x 7→ AαQ
(x)

.
= αQx(A) , y 7→ Bα(y)

.
= αy(B)

6



and sets
A ×Q B

.
= AαQ

× Bα , A, B ∈ C∞ .

It has been shown by Rieffel [28] that ×Q defines an associative product on C∞,
the Rieffel product, which is compatible with the ∗–operation. In view of the
normalization of the bilinear form chosen in Lemma 2.1 (i), the original identity
operator 1 still acts as the identity with respect to the new product ×Q. Moreover,
there exists a C∗–norm on the deformed algebra (C∞,×Q). It is of interest here
that, by Lemma 2.1, the Rieffel product extends to more general functions in C in
a natural manner. We shall take advantage of this fact in the following subsection.

2.2 Warped Convolution

We turn now to the discussion of the warped convolution on (C, Rn) introduced
in [13]. Many of the results below were stated there and provided with sketches of
proofs; in addition to supplying complete proofs of those assertions, here we also
prove results which strengthen and complement those discussed in [13].

The weakly continuous unitary representation U of Rn implementing α enters
into the definition of the warped convolution. In a first step we want to give
proper meaning to the formal expressions

∫
B

αQx(A) dE(x) and
∫

B
dE(x) αQx(A),

A ∈ C∞, where Q is any real n × n matrix, E is the spectral resolution of U
and B ⊂ Rn is any bounded Borel set. If F is a finite–dimensional projection,
it follows from the spectral calculus that the integrals

∫
B

αQx(A) FdE(x) and∫
B

dE(x)F αQx(A) are well–defined in the strong operator topology. Moreover,
since U(y) =

∫
eixy dE(x), y ∈ Rn, one obtains for any test function f as in

Lemma 2.1
∫

B

αQx(A) FdE(x) = lim
ε→0

(2π)−n

∫∫
dxdy f(εx, εy)e−ixy αQx(A) FE(B)U(y) ,

∫

B

dE(x) FαQx(A) = lim
ε→0

(2π)−n

∫∫
dxdy f(εx, εy)e−ixy E(B)U(x)F αQy(A) .

Hence, adopting the notation in Lemma 2.1,
∫

B

αQx(A) FdE(x) = AαQ
× FUB ,

∫

B

dE(x) FαQx(A) = UBF × AαQ
,

where we have introduced the function x 7→ UB(x)
.
= E(B) U(x), which is an

element of C
∞ since the set B is bounded. Choosing any net of projections F

converging monotonically to the identity operator 1, it follows from part (iv) of
Lemma 2.1 that the right hand side of these equalities converges in the strong
operator topology. Hence the corresponding limits of the integrals on the left hand
side exist in B(H) and can be used to define the warped convolution integrals as

∫

B

αQx(A) dE(x)
.
= lim

Fր1

∫

B

αQx(A) F dE(x) = AαQ
× UB ,

∫

B

dE(x) αQx(A)
.
= lim

Fր1

∫

B

dE(x) FαQx(A) = UB × AαQ
.

(2.2)
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If the spectrum sp U of U is compact, the integrals do not depend on B if B ⊃ sp U ,
so one can proceed to the limit B ր Rn in B(H). In the general case, however, we
have a priori no control on the continuity properties of the resulting operators. In
order to cope with this problem, we consider the dense domain D ⊂ H of vectors
which are smooth with respect to the action of U . Let P = (P1, . . . , Pn) be the
generators of U and let

x 7→
(
URn (1 + P 2)−n−1

)
(x)

.
= U(x)(1 + P 2)−n−1 .

This function is an element of C which is n + 1 times continuously differentiable.
Making use of the first half of part (iv) of Lemma 2.1, we thus get for Φ ∈ D

(
AαQ

× UB

)
Φ =

(
AαQ

× UB

)
(1 + P 2)−n−1 (1 + P 2)n+1Φ

=
(
AαQ

× E(B) URn(1 + P 2)−n−1
)
(1 + P 2)n+1Φ .

In the latter expression we can proceed to the limit B ր Rn according to the second
half of part (iv) of Lemma 2.1, since the projections E(B) converge strongly to 1
in this limit. In view of relation (2.2), this proves the existence of the first type of
integrals,

∫
αQx(A) dE(x) Φ

.
= lim

BրRn

∫

B

αQx(A) dE(x) Φ

=
(
AαQ

× URn (1 + P 2)−n−1
)
(1 + P 2)n+1Φ .

(2.3)

Part (iii) and the first half of part (iv) of Lemma 2.1 imply that the functions
x 7→ αx

(
AαQ

× URn (1 + P 2)−n−1
)

= U(x)AαQ
U(x)−1 × URn (1 + P 2)−n−1 are

elements of C
∞, since x, y 7→ (U(x)AαQ

U(x)−1)(y) = αx+Qy(A) is smooth in both
variables. So it is also clear that the domain D is stable under the action of the
integrals.

For the proof of existence of the second type of integrals, we make use of the
fact that the functions x 7→ αx

(
(1 + P 2)n+1A(1 + P 2)−n−1

)
, A ∈ C∞ are elements

of C
∞.3 Thus, by the first half of part (iv) of Lemma 2.1, we get for Φ ∈ D

(
UB × AαQ

)
Φ =

(
UB × AαQ

)
(1 + P 2)−n−1(1 + P 2)n+1Φ

=
(
UB × (1 + P 2)−n−1(1 + P 2)n+1

AαQ
(1 + P 2)−n−1

)
(1 + P 2)n+1Φ

=
(
URnE(B)(1 + P 2)−n−1

× (1 + P 2)n+1
AαQ

(1 + P 2)−n−1
)
(1 + P 2)n+1Φ ,

where in the latter expression we can proceed again to the strong limit E(B) ր 1
if B ր Rn. In view of relation (2.2), this proves existence of the strong limits

∫
dE(x) αQx(A) Φ

.
= lim

BրRn

∫

B

dE(x) αQx(A) Φ

=
(
URn (1 + P 2)−n−1

× (1 + P 2)n+1
AαQ

(1 + P 2)−n−1
)
(1 + P 2)n+1Φ .

3This can be seen by pulling the components of P through from the left to the right of A,
noticing that their commutators with A yield derivatives of A.
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By a similar argument as before, one finds that the domain D is stable under the
action of the second type of integrals, as well.

It follows at once from the preceding results and Lemma 2.1 that one can
conveniently present the two types of integrals on the domain D in terms of the
strong limits

∫
αQx(A) dE(x) Φ = lim

ε→0
(2π)−n

∫∫
dxdy f(εx, εy) e−ixy αQx(A) U(y) Φ ,

∫
dE(x) αQx(A) Φ = lim

ε→0
(2π)−n

∫∫
dxdy f(εx, εy) e−ixy U(x) αQy(A) Φ .

(2.4)

We shall make use of these relations throughout the subsequent analysis.

In the following, we limit ourselves to the particularly interesting case where
the matrix Q entering into the definition of the integrals is skew symmetric relative
to the chosen bilinear form on Rn. It is understood without further mention that
the integrals are defined on the common stable domain D.

Lemma 2.2 Let Q be any real skew symmetric matrix on Rn and let A ∈ C∞.
Then

(i)
∫

dE(x) αQx(A) =
∫

αQx(A) dE(x) and

(ii)
( ∫

αQx(A) dE(x)
)∗ ⊃

∫
αQx(A

∗) dE(x).

Proof. (i) As pointed out above, one has for Φ ∈ D
∫

αQx(A) dE(x) Φ = lim
ε→0

(2π)−n

∫∫
dxdy f(εx, εy) e−ixy αQx(A) U(y) Φ .

The integration can be restricted to the submanifold (ker Q)⊥ × (ker Q)⊥, since
the remaining integrals merely produce factors of 2π. Substituting x → x + Q−1y
and taking into account that Q−1 is skew symmetric, one gets

∫∫
dxdy f(εx, εy) e−ixy αQx(A) U(y)

=

∫∫
dxdy g(εx, εy) e−ixy U(y)αQx(A)

=

∫∫
dxdy g(εy, εx) e−ixy U(x) αQy(A) ,

where g(x, y)
.
= f(x + Q−1y, y). In the limit ε → 0 one obtains

lim
ε→0

(2π)−n

∫∫
dxdy g(εy, εx) e−ixy U(x) αQy(A) Φ =

∫
dE(x) αQx(A) Φ ,

proving assertion (i).
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(ii) For the proof of the second assertion, note that

(∫∫
dxdy f(εx, εy) e−ixy αQx(A) U(y)

)∗

=

∫∫
dxdy f(εx, εy) eixy U(−y) αQx(A

∗)

=

∫∫
dxdy f(εy,−εx) e−ixy U(x) αQy(A

∗) .

Hence, for Ψ, Φ ∈ D,

〈Ψ,

∫
αQx(A) dE(x) Φ〉 = lim

ε→0
(2π)−n〈Ψ,

∫∫
dxdy f(εx, εy) e−ixy αQx(A) U(y)Φ〉

= lim
ε→0

(2π)−n〈
∫∫

dxdy f(εy,−εx) e−ixy U(x) αQy(A
∗)Ψ, Φ〉

= 〈
∫

dE(x) αQx(A
∗) Ψ, Φ〉 .

The assertion now follows from the preceding step. �

We may therefore meaningfully declare the following definition as in [13].

Definition 2.3 Let Q be a real skew symmetric matrix on R
n and let A ∈ C∞.

The corresponding warped convolution AQ of A is defined on the domain D by
means of the preceding results according to

AQ
.
=

∫
dE(x) αQx(A) =

∫
αQx(A) dE(x) .

In particular, 1Q = 1.

We shall next show that the warped convolution provides a representation of the
algebra (C∞,×Q) defined by A 7→ πQ(A)

.
= AQ. The argument proceeds through

a number of steps. It is apparent from the definition that the map πQ is linear
and, by the second part of the preceding lemma, we have πQ(A)∗ ⊃ πQ(A∗). The
proof that πQ is also multiplicative requires more work.

Lemma 2.4 Let Q be a real skew symmetric matrix on Rn and let A, B ∈ C∞.
Then (understood as an equality on D)

AQBQ = (A ×Q B)Q ,

where ×Q denotes the Rieffel product on C∞. In other words,

πQ(A)πQ(B) = πQ(A ×Q B) .
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Proof. Let f, g be test functions as in Lemma 2.1. Recalling that A ×Q B ∈ C∞

can be approximated in norm according to

A ×Q B = lim
δ→0

(2π)−n

∫∫
dvdw f(δv, δw) e−ivw αQv(A)αw(B) ,

one finds for Φ ∈ D
(2π)2n(A ×Q B)QΦ

= lim
ε,δ→0

∫∫∫∫
dvdwdxdy f(δv, δw)g(εx, εy) e−ivw−ixy αQv+Qx(A)αw+Qx(B) U(y) Φ ,

in the sense of strong convergence. Similarly, one has

(2π)2nAQBQΦ

= lim
ε,δ→0

∫∫∫∫
dvdwdxdy g(εv, εw)f(δx, δy) e−ivw−ixyαQv(A) U(w) αQx(B) U(y)Φ .

In both cases the limits are to be performed in the given order. In order to
see that these limits coincide, one rewrites the two integrals. For the first one,
by substituting (v, w) → (v − x, w − Qx) and bearing in mind that Q is skew
symmetric, one obtains

∫∫∫∫
dvdwdxdy f(δv, δw)g(εx, εy) e−ivw−ixy αQv+Qx(A)αw+Qx(B) U(y) Φ

=

∫∫∫∫
dvdwdxdy hδ,ε(v, w, x, y) e−ivw−ix(y+Qv−w) αQv(A) αw(B) U(y) Φ ,

where hδ,ε(v, w, x, y)
.
= f(δ(v − x), δ(w − Qx)) g(εx, εy) . For the second integral,

by substituting (w, y) → (w − Qx, y + Qx − w) and making use again of the fact
that Q is skew symmetric, one finds

∫∫∫∫
dvdwdxdy g(εv, εw)f(δx, δy) e−ivw−ixyαQv(A) U(w) αQx(B) U(y)Φ

=

∫∫∫∫
dvdwdxdy kδ,ε(v, w, x, y) e−ivw−ix(y+Qv−w) αQv(A) αw(B) U(y) Φ ,

where kδ,ε(v, w, x, y) = f(δx, δ(y+Qx−w))g(εv, ε(w−Qx)). Thus the two integrals
coincide apart from the mollifying test functions hδ,ε and kδ,ε, respectively.

In order to show that the two integrals have the same limits, one proceeds as
in the proof of part (i) of Lemma 2.1. Again one finds by Fourier transformation
that for any given polynomial L on R4n there is a corresponding polynomial P
such that

L(v, w, x, y) e−ivw−ix(y+Qv−w) = P (−∂v,−∂w,−∂x,−∂y) e−ivw−ix(y+Qv−w) .

A convenient choice for L is given by

L(v, w, x, y) =
(
Ln(v)Ln(w)Ln(x)Ln(y)

)−1
, (2.5)
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where Ln are the mollifiers introduced before. With this choice one gets by partial
integration, setting u

.
= (v, w, x, y), du = dvdwdxdy and ∂

.
= (∂v, ∂w, ∂x, ∂y),

∫∫∫∫
duhδ,ε(u) e−ivw−ix(y+Qv−w) αQv(A) αw(B) U(y) Φ

=

∫∫∫∫
du e−ivw−ix(y+Qv−w) P (∂) hδ,ε(u) L(u)−1αQv(A) αw(B) U(y) Φ .

The derivatives in the second line are well–defined, since A, B ∈ C∞ and Φ ∈ D.
Moreover, all derivatives of u 7→ L(u)−1 are absolutely integrable, and the deriva-
tives of u 7→ hδ,ε(u) produce factors of δ and ε, respectively. Thus in the limit
of small δ and ε one can replace in the above integral the test function hδ,ε by its
value at the origin, i.e. 1. The same argument applies if one replaces hδ,ε by kδ,ε,
proving equality of the limits of the respective integrals. �

At this point, the operators πQ(A) = AQ, A ∈ C∞, are well–defined only on the
dense, invariant domain D, defining there a ∗–algebra. We next show that they
may be extended to bounded operators on H, in contradiction to an assertion made
in [13]. In the proof we make use of the fact that the algebra (C∞,×Q) admits
a C∗–norm || · ||Q, cf. [28, Ch. 4]. It thus can be completed to a C∗–algebra,
denoted by (CQ,×Q), to which the group of automorphisms αx, x ∈ Rn, extends
in a strongly continuous manner [28, Prop. 5.11].

As is well known, every positive element of a C∗–algebra has a positive square
root in the algebra. We need here the following more detailed information.

Lemma 2.5 Let A ∈ C∞ be strictly positive in (CQ,×Q), i.e. A − δ 1 =B∗ ×Q B
for some δ > 0 and B ∈ (CQ,×Q). Then its positive square root

√
A ∈ (CQ,×Q) is

also an element of C∞.

Proof. The form of A implies that its spectrum is contained in the interval
[δ, ‖A‖Q]. As the square root z 7→ √

z is holomorphic in a complex neighborhood
of this region and C∞ is closed under the holomorphic calculus [28, Corollary 7.6],
it follows that

√
A ∈ C∞. �

With the help of this lemma we can show now that the operators πQ(A) = AQ,
A ∈ C∞ are bounded. For the operators (δ+a)21−A∗×QA, a

.
= ‖A‖Q, are elements

of C∞ and strictly positive in (CQ,×Q) for every δ > 0. Thus their positive square
roots B

.
=

√
(δ + a)21 − A∗ ×Q A ∈ (CQ,×Q) are elements of C∞ according to the

preceding lemma. Bearing in mind the properties of πQ established thus far, we
therefore have for any Φ ∈ D

(δ + a)2‖Φ‖2 − ‖πQ(A)Φ‖2

= 〈Φ, πQ

(
(δ + a)21 − A∗ ×Q A

)
Φ〉 = 〈Φ, πQ(B∗ ×Q B)Φ〉 = ‖πQ(B)Φ‖2 ≥ 0,

where we made use of the fact that B∗ = B since B is positive. Hence we obtain
‖πQ(A)Φ‖ ≤ (‖A‖Q + δ) ‖Φ‖, Φ ∈ D. Since D is dense in H and δ > 0 was
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arbitrary, we conclude that the operators πQ(A) can be extended to the whole
Hilbert space with operator norms satisfying the bound

‖πQ(A)‖ ≤ ‖A‖Q , A ∈ C∞ . (2.6)

Moreover, it follows from this estimate and the preceding results that the repre-
sentation πQ : C∞ → B(H) can be continuously extended to a representation of
the C∗–algebra (CQ,×Q) on H. We summarize these findings.

Theorem 2.6 The map

πQ(A)
.
= AQ , A ∈ C∞ ,

extends to a representation of the Rieffel–deformed C∗–algebra (CQ,×Q) on H. In
particular, one has the bound

‖πQ(A)‖ ≤ ‖A‖Q , A ∈ (CQ,×Q) .

Example: Of particular interest in physics are the cases where the spectrum of U
contains an atomic part. Without loss of generality one may then assume that {0}
is part of the atomic spectrum with corresponding invariant vector Ω.4 Since the
algebra C∞ is weakly dense in B(H), it is clear that Ω is cyclic for C∞; moreover,
because of the invariance of Ω under the action of U , one also has C∞Ω ⊂ D.
Within this setting the relation between the warped convolutions and the Rieffel
deformations can be exhibited quite easily. For, as a consequence of the invariance
of Ω, one obtains for A, B ∈ C∞,

AQ BΩ = lim
ε→0

(2π)−n

∫∫
dxdy e−ixy f(εx, εy) αQx(A) U(y) BΩ

= lim
ε→0

(2π)−n

∫∫
dxdy e−ixy f(εx, εy) αQx(A) αy(B) Ω

= (A ×Q B) Ω .

In particular,
AQΩ = AΩ , A ∈ C∞ . (2.7)

Making use of the associativity of the product ×Q on C∞, it is therefore clear that
for A, B, C ∈ C∞,

AQBQ CΩ = AQ (B ×Q C)Ω = (A ×Q B ×Q C)Ω = (A ×Q B)Q CΩ .

We return now to the discussion of the general case and exhibit further inter-
esting properties of the representations πQ introduced above.

4Note that proceeding from the group U(x) to the group Uq(x) = eiqxU(x), x ∈ Rn, merely
amounts to a translation A → αQq(A) of the operators A in the original warped convolution.
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Proposition 2.7 Let πQ be the representation of the C∗–algebra (CQ,×Q) estab-
lished by the preceding theorem.

(i) πQ is α–covariant, i.e. for any A ∈ (CQ,×Q)

πQ(αx(A)) = U(x)πQ(A)U(x)−1 , x ∈ R
n .

(ii) πQ induces a bijective map of C∞ onto itself.

(iii) πQ is faithful, i.e. ‖πQ(A)‖ = ‖A‖Q, A ∈ (CQ,×Q).

(iv) πQ is irreducible.

Proof. (i) Let A ∈ C∞. Since the domain D is stable under the action of the
unitaries U(x), relation (2.3) and Lemma 2.1 imply U(x)AQU(x)−1 = (αx(A))Q,
proving the assertion for A ∈ C∞. The continuity properties of πQ and the auto-
morphic action of αx on (CQ,×Q) then yield assertion (i).

(ii) According to [28, Thm. 7.1], the smooth elements of (CQ,×Q) are exactly the
elements of C∞. It therefore follows from the continuity of the map πQ that the
functions x 7→ πQ(αx(A)), A ∈ C∞, are smooth; hence πQ(A) = AQ ∈ C∞ for
A ∈ C∞. The proof that πQ ↾ C∞ is bijective requires a computation: In view of
the preceding observation, one may apply the warping procedure with underlying
matrix −Q to the operator AQ, giving (AQ)−Q. Now according to relation (2.4)
one has on the domain D

(2π)2n (AQ)−Q

= lim
ε,δ→0

∫∫∫∫
dvdwdxdy f(εv, εw)f(δx, δy) e−ivw−ixy αQx−Qv(A)U(y)U(w) ,

where the limits are to be performed in the given order. Substituting (v, w) →
(x − v, w − y), the integral can be transformed into

∫∫∫∫
dvdwdxdy f(ε(x − v), ε(w − y))f(δx, δy) eivw−ixw−iyv αQv(A)U(w) .

As the x, y–integration in the latter integral involves only ordinary functions, it is
straightforward to compute its limit for δ → 0, giving

(2π)n

∫∫
dvdw (1/ε)2n f̂(w/ε,−v/ε) e−ivw αQv(A)U(w) ,

where f̂ denotes the Fourier transform of f . It is also apparent that the latter
expression converges to (2π)2n A as ε → 0. Hence (AQ)−Q = A for A ∈ C∞. Now
if πQ(A) = AQ = 0, it follows that A = (AQ)−Q = 0, so πQ ↾ C∞ is injective;
similarly, interchanging the role of Q and −Q, one has πQ(A−Q) = (A−Q)Q = A,
so πQ ↾ C∞ is also surjective.

(iii) Since πQ is α–covariant, its kernel ker πQ is α–invariant. Hence, in view of
the strongly continuous action of α on (C∞,×Q), the space ker πQ

⋂ C∞ is dense
in ker πQ. But this space coincides with {0}, since πQ ↾ C∞ is injective according
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to the preceding result. Consequently, ‖πQ( · )‖ defines a C∗–norm on (CQ,×Q),
which must coincide with ‖ · ‖Q because of the uniqueness of such norms.
(iv) The final assertion follows from the fact that πQ ↾ C∞ is surjective. So its
range contains C∞, which is weakly dense in B(H). �

Let us turn now to the case of an abstractly given C∗–dynamical system (A, Rn)
equipped with some strongly continuous representation α : Rn → AutA. Denoting
by A∞ the smooth elements of A, one obtains by arguments given by Rieffel
[28] and sketched at the end of Section 2.1 a deformed ∗–algebra (A∞,×Q) with
C∗–norm ‖ · ‖Q for any given skew symmetric matrix Q. Its C∗–completion will be
denoted (AQ,×Q). Here we have used Q as an upper index in order to distinguish
the abstract setting from the concrete one used thus far.

Let (π,H) be an α–covariant representation of A on a Hilbert space H, i.e. on
H there exists a weakly continuous unitary representation U of Rn such that

U(x)π(A)U(x)−1 = π(αx(A)) , A ∈ A . (2.8)

Consequently π(A∞) ⊂ C∞, so one can define for any A, B ∈ A∞ the operators
π(A)Q ∈ C∞ and the product π(A)×Qπ(B); moreover, π(A)×Qπ(B) = π(A×QB).

After having established the properties of the warping procedure on C∞, it is
almost evident that the covariant representation (π,H) of A induces a covariant
representation (πQ,H) of (AQ,×Q). It is fixed by setting

π Q(A)
.
= π(A)Q , A ∈ A∞ . (2.9)

By Theorem 2.6, the operators πQ(A) are bounded. Moreover, it follows from
Lemma 2.2 that

πQ(A)∗ = (π(A)Q)∗ = (π(A)∗)Q = π(A∗)Q = πQ(A∗) .

Similarly, Lemma 2.4 implies

πQ(A)πQ(B) = π(A)Qπ(B)Q = (π(A) ×Q π(B))Q = π(A ×Q B)Q = πQ(A ×Q B) .

Finally, one may employ the analogue of Lemma 2.5 in the abstract setting and
the reasoning thereafter to obtain ‖πQ(A)‖ ≤ ‖A‖Q, A ∈ A∞. Hence the homo-
morphism πQ : A∞ → B(H) can be extended by continuity to a representation of
(AQ,×Q), as claimed. ¿From the first part of Proposition 2.7 it follows that

U(x)πQ(A)U(x)−1

= U(x)π(A)QU(x)−1 = (U(x)π(A)U(x)−1)Q = π(αx(A))Q = πQ(αx(A)) ,

for all A ∈ A∞. So the representation πQ is also covariant, hence πQ(A∞) ⊂ C∞.
Depending on the properties of the chosen representation (π,H) of A, the map
πQ : A∞ → C∞ may not be injective or surjective. But according to part (ii) of
the preceding proposition one has π(A)Q = 0 if and only if π(A) = 0, A ∈ A∞.
Furthermore, in view of the continuity of the action α on A and AQ, the inclusions
ker π

⋂A∞ ⊂ ker π and ker πQ
⋂A∞ ⊂ ker πQ are dense in the norms ‖ · ‖ and

‖ · ‖Q, respectively. Thus it follows that πQ is faithful if and only if π is faithful.
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Theorem 2.8 Let (π,H) be an α–covariant representation of the C∗–algebra A.
The homomorphism πQ : A∞ → B(H), fixed by the relation

π Q(A)
.
= π(A)Q , A ∈ A∞ ,

extends continuously to an α–covariant representation of the C∗–algebra (AQ,×Q).
Moreover, πQ is faithful if and only if π is faithful.

So the warping method provides a representation of the deformed algebras in
the same Hilbert space as the undeformed algebra, enabling the direct comparison
of deformed operators corresponding to different Q. This point will prove to be
useful in the physical context treated below.

2.3 Further Properties of Warped Convolutions

Even though the warped convolutions may be viewed as merely generating certain
specific representations of Rieffel algebras, it will be advantageous to base the
subsequent discussion directly on them without referring to the Rieffel setting.
The reasons for this are threefold: (a) It will be necessary to deal with subalgebras
of the algebra of smooth operators which are not invariant under the automorphic
action of the translations. So there is no corresponding Rieffel algebra, but the
warping procedure is still meaningful. (b) It will be necessary to consider warped
operators AQ, A′

Q′ and their sums and products for different matrices Q, Q′. Such
operations can be carried out in the framework of warped convolutions more easily
than in the Rieffel setting, where one has to use Hilbert modules instead of Hilbert
spaces. (c) We shall need to establish algebraic properties of the warped operators
arising from spectral properties of the unitary representation U , which are not
available in the Rieffel setting.

Returning to the Hilbert space framework, we first exhibit some general co-
variance properties of the warped convolutions, cf. [13]. To this end we consider
(anti)unitary operators V whose adjoint actions on the translations U induce lin-
ear transformations of Rn. It follows at once that for any such V the algebra C∞ is
stable under the corresponding adjoint action, V C∞V −1 = C∞, and V D = D. The
following result is the first instance where we must deal with warped convolutions
for different choices of the underlying matrix Q.

Proposition 2.9 Let V be a unitary or antiunitary operator on H such that
V U(x)V −1 = U(Mx), x ∈ Rn, for some invertible matrix M . Then, for A ∈ C∞,

V AQV −1 = (V AV −1)σMQMT ,

where MT is the transpose of M with respect to the chosen bilinear form, σ = 1 if
V is unitary and σ = −1 if V is antiunitary.
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Proof. Making use of relation (2.4) for real f , one commences from the equalities
of strong integrals

V

∫∫
dxdy e−ixy f(εx, εy) αQx(A) U(y) V −1

=

∫∫
dxdy e−iσxy f(εx, εy) αMQx(V AV −1) U(My)

=

∫∫
dxdy e−ixy f(εσMT x, εM−1y) ασMQMT x(V AV −1) U(y) ,

where the last equality is obtained by substituting (x, y) → (σMT x, M−1y). Ap-
plying these relations to any vector Φ ∈ D and taking into account V −1D = D,
the assertion follows in the limit of small ε. �

Next, we establish a result which is fundamental for the applications to physics.
We shall show that the warped convolutions preserve certain specific commutation
properties of the operators in C∞ for appropriate choices of the underlying skew
symmetric matrices depending on the spectrum of the representation U [13].

Proposition 2.10 Let A, B ∈ C∞ be operators such that [αQx(A), α−Qy(B)] = 0
for all x, y ∈ sp U . Then

[AQ, B−Q] = 0 .

Proof. Returning to the definition of the warped convolutions by the spectral
calculus and making use of Lemma 2.2, one finds for vectors Φ, Ψ with compact
spectral support

〈Φ, AQB−QΨ〉 = lim
F,F ′ր1

〈Φ,
(∫

dE(x)FαQx(A)
)(∫

α−Qy(B)F ′dE(y)
)
Ψ〉 ,

where F, F ′ are finite–dimensional projections. Now

〈Φ,
(∫

dE(x)FαQx(A)
)(∫

α−Qy(B)F ′dE(y)
)
Ψ〉

=

∫∫
〈Φ, dE(x)FαQx(A) α−Qy(B)F ′dE(y)Ψ〉

=

∫∫
〈Φ, dE(x)Fα−Qy(B) αQx(A)F ′dE(y)Ψ〉 ,

where the step from the first to the second line is justified by the fact that the given
expression can be decomposed into a finite sum of product measures multiplied
with smooth functions. The second step is a consequence of the commutativity
properties of A and B. Introducing the notation u = (v, w, x, y) ∈ R4n and picking
any test function u 7→ h(u) which which is equal to 1 at 0, it follows from the
spectral representation of U that the latter integral is equal to

lim
ε→0

(2π)−2n

∫∫∫∫
duh(εu) e−ivx−iyw 〈Φ, U(v)Fα−Qy(B) αQx(A)F ′U(w)Ψ〉 .
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Adopting now the arguments and notation in the final part of the proof of Lemma
2.4, one finds that for the polynomial L (2.5) there exists a corresponding polyno-
mial P such that

∫∫∫∫
duh(εu) e−ivx−iyw 〈Φ, U(v)Fα−Qy(B) αQx(A)F ′U(w)Ψ〉

=

∫∫∫∫
du e−ivx−iyw P (∂) h(εu) L(u)−1〈Φ, U(v)Fα−Qy(B) αQx(A)F ′U(w)Ψ〉 .

After having performed the differentiations in the last integral, one sees by an
application of the dominated convergence theorem that the composite limit ε → 0,
F, F ′ ր 1 is independent of the order in which the individual limits are carried
out and also does not depend on the choice of h. Thus one has, in particular,

〈Φ, AQB−QΨ〉

= lim
ε→0

(2π)−2n

∫∫∫∫
duh(εu) e−ivx−iyw 〈Φ, U(v)α−Qy(B) αQx(A)U(w)Ψ〉 .

As before, one takes advantage of the fact that the integration may be restricted
to the submanifold (ker Q)⊥ × · · · × (ker Q)⊥ ⊂ R

4n, since the remaining integrals
merely produce factors of 2π. So the preceding integral can be recast as

∫∫∫∫
du e−ivx−iyw h(εu) 〈Φ, U(v)α−Qy(B) αQx(A)U(w)Ψ〉

=

∫∫∫∫
du e−ivx−iyw h(εu) 〈Φ, U(w)α−Qy+v−w(B) αQx+v−w(A)U(v)Ψ〉

=

∫∫∫∫
du e−ivx−iyw k(εu) 〈Φ, U(w)α−Qy(B) αQx(A)U(v)Ψ〉 ,

where k(v, w, x, y) = h(v, w, x − Q−1(v − w), y + Q−1(v − w)). The last equality
is the result of the substitution (x, y) → (x − Q−1(v − w), y + Q−1(v − w), under
which e−ivx−iyw does not change because of the skew symmetry of Q. Proceeding
to the limit of small ε, one obtains by relation (2.4) and Lemma 2.2

lim
ε→0

(2π)−2n

∫∫∫∫
du e−ivx−iyw k(εu) 〈Φ, U(w)α−Qy(B) αQx(A)U(v)Ψ〉

= 〈Φ, B−QAQΨ〉 .

This shows that 〈Φ, AQB−QΨ〉 = 〈Φ, B−QAQΨ〉. Since Φ, Ψ were arbitrary ele-
ments of a dense set of vectors, the assertion now follows. �

We finally discuss the structure of the family of maps given by the warped
convolutions. According to Proposition 2.7 (ii), these maps act bijectively on C∞

and therefore can be composed and have inverses. In fact, they form a group which
is homomorphic to Rn(n−1)/2, as can be seen from the next proposition.

Proposition 2.11 Let Q1, Q2 be skew symmetric matrices. Then

(AQ1
)Q2

= AQ1+Q2
, A ∈ C∞ .
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Proof. To begin, note that for any continuous bounded function f of the gen-
erator P of U one has AQf(P ) = (Af(P ))Q, as a consequence of relation (2.3)
and part (iv) of Lemma 2.1. Let Φ ∈ D be any vector with compact spec-
tral support and let f be a test function such that f(P )Φ = Φ. It follows
that (AQ1

)Q2
Φ = (AQ1

f(P ))Q2
f(P )Φ. Picking nets of finite–dimensional pro-

jections F, F ′ converging to 1, making use of the spectral calculus, which implies
f(P ) dE(z) = f(z) dE(z), z ∈ Rn, and recalling the definition of the warped
convolutions, one obtains in the sense of weak convergence

(AQ1
)Q2

Φ = lim
F ′ր1,Fր1

∫∫
f(x)f(y) αQ1x+Q2y(A) FdE(x)F ′dE(y)Φ .

Here the limits are taken in the given order and the (strong) limit F ր 1 has
been interchanged with the y–integration by an application of the dominated con-
vergence theorem. Since the function x, y 7→ f(x)f(y)αQ1x+Q2y(A) is smooth and
rapidly decreasing in norm, one can interchange the limits. The product measure
dE(x)F ′dE(y) converges weakly in the sense of distributions to δ(x − y) dxdE(y)
as F ′ ր 1, where δ(x − y) dx is the Dirac measure at y; hence one obtains

(AQ1
)Q2

Φ = lim
Fր1

∫
α(Q1+Q2)x(A) FdE(x)f(P )2Φ = AQ1+Q2

Φ .

The desired conclusion then follows, because the space of vectors Φ with compact
spectral support is dense in H. �

Note that this result does not entail a composition law of the representations πQ of
the Rieffel algebras, since their ranges do not, in general, fit with their respective
domains.

Further Results: Most of the preceding results can be established in a setting
of unbounded operators. One proceeds again from a continuous unitary represen-
tation U of Rn and considers the ∗–algebra F of all operators F for which there
is some nF ∈ N such that the functions x 7→ (1 + P 2)−nF αx(F )(1 + P 2)−nF are
arbitrarily often differentiable in norm. The operators F ∈ F are defined on the
domain D and leave it invariant. Making use of the fact that there is a version
of Lemma 2.1 in this setting, one can define the Rieffel product ×Q on F ; the
warped convolutions of the elements of F can be defined as well and are elements
of F . Moreover, Lemmas 2.2 and 2.4 hold without changes, so the warped convo-
lutions define an (unbounded) ∗–representation of (F ,×Q), and Propositions 2.9,
2.10 and 2.11 hold as well. We refrain from giving the proofs here.

3 Warped Convolutions and Borchers Triples

We consider now warped convolutions in the context of Borchers triples, invented
by Borchers [3] for the construction and analysis of relativistic quantum field theo-
ries. This setting is, on the one hand, more restrictive than the preceding one, since
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one deals with unitary representations U of the translations Rn, n ≥ 2, with certain
specific spectral properties. On the other hand, one considers subalgebras of B(H)
on which the adjoint action α of U merely induces endomorphisms for semigroups
of translations in the set W .

= {x = (x0, x1, . . . , xn−1) ∈ Rn : x1 ≥ |x0|}.

Definition 3.1 A Borchers triple (R, U, Ω) (relative to W) consists of

(a) a von Neumann algebra R ⊂ B(H),

(b) a weakly continuous unitary representation U of Rn on H whose spectrum is
contained in the closed forward light cone V+ = {p = (p0, p1, . . . , pn−1) ∈ Rn :
p0 ≥

√
p2

1 + . . . + p2
n−1} and which satisfies αx(R) ⊂ R, x ∈ W,

(c) and a unit vector Ω ∈ H which is invariant under the action of U and is
cyclic and separating for R.

By condition (c), Tomita–Takesaki theory [30,31] is applicable to the pair (R, Ω),
and we shall denote by ∆, J the associated modular operator and involution. In
this context Borchers [3] proved the following remarkable theorem (see [15] for a
simpler proof).

Theorem 3.2 Let (R, U, Ω) be a Borchers triple relative to W. Denoting by ϑ(t),
t ∈ R, and j the transformations acting on x = (x0, x1, . . . xn−1) ∈ Rn by

ϑ(t) x
.
= (cosh(2πt)x0 + sinh(2πt)x1, sinh(2πt)x0 + cosh(2πt)x1, x2, . . . , xn−1) ,

jx
.
= (−x0,−x1, x2, . . . xn−1) ,

one has

(i) ∆itU(x)∆−it = U(ϑ(t)x) for x ∈ Rn and t ∈ R,

(ii) JU(x)J = U(jx) for x ∈ Rn.

Moreover, (R′, U, Ω) is a Borchers triple relative to −W, where R′ = JRJ is the
commutant of R.

Proof. The assertion for n = 2 is proven in [3]. Setting x⊥ = (0, 0, x2, . . . , xn−1),
conditions (b), (c) in Definition 3.1 imply U(x⊥)RU(x⊥)−1 = R and U(x⊥)Ω = Ω.
The uniqueness of the modular objects then entails that ∆ and J both commute
with all U(x⊥), completing the proof in the general case. �

We shall show now that the family of Borchers triples is stable under the defor-
mations induced by warped convolutions corresponding to certain specific choices
of the skew symmetric matrix5 Q. Moreover, the modular objects of the deformed

5 Having in mind applications to quantum field theory, we choose henceforth the Lorentz
product xy = x0y0 −

∑n−1

m=1
xmym, x, y ∈ Rn, as the bilinear form on Rn.
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triples coincide with those of the original one. This observation is of relevance in
quantum field theory, which will be discussed at the end of this section.

We begin with some technical remarks. Let C∞ be, as above, the ∗–algebra of
all smooth elements in B(H) under the adjoint action of the translations and let
R∞ = R⋂ C∞. In view of condition (b) in Definition 3.1, one obtains elements
of R∞ by smoothing any element R ∈ R with Schwartz test functions f having
support in W,

R(f)
.
=

∫
dx f(x) αx(R) . (3.1)

These weak integrals are elements of R∞ since, by construction, they are smooth
and contained in the von Neumann algebra R. Choosing sequences fn of test
functions with support in W which approximate the Dirac measure at 0, one sees
that R∞ is dense in R in the strong operator topology, and consequently Ω is cyclic
for R∞. By the same reasoning one finds that Ω is also cyclic for R′∞ .

= R′
⋂ C∞.

Now let Q be any real skew symmetric matrix on R
n which is W–compatible

in the sense that QV+ ⊂ W. This constraint on Q will become important in the
following. The corresponding warped operators AQ, A ∈ R∞, are defined as in the
previous section. Since they are bounded and satisfy AQ

∗ = A∗
Q, they generate a

von Neumann algebra, called a warped algebra for short. With a slight abuse of
notation, we write

RQ
.
= {AQ : A ∈ R∞}′′ .

For the proof that the warped triple (RQ, U, Ω) is again a Borchers triple, we
note that, as a consequence of Proposition 2.9, one has αx(RQ) = αx(R)Q ⊂ RQ

for x ∈ W. So condition (b) in Definition 3.1 is satisfied. Furthermore, since Ω is
cyclic for R∞, it is also cyclic for RQ as a consequence of equation (2.7). In order to
see that Ω is separating for RQ, let A ∈ R∞, A′ ∈ R′∞. Then [αx(A), αy(A

′)] = 0
for x ∈ W, y ∈ −W, and taking into account that Q sp U ⊂ Q V+ ⊂ W, it follows
from Proposition 2.10 that [AQ, A′

−Q] = 0. Thus (R′)−Q ⊂ (RQ)′. But equation
(2.7) implies that Ω is cyclic for (R′)−Q and thus a fortiori for (RQ)′. Hence Ω is
separating for RQ, and condition (c) in Definition 3.1 holds as well.

Theorem 3.3 Let (R, U, Ω) be a Borchers triple relative to W and let Q be W–
compatible. Then the resulting warped triple (RQ, U, Ω) is also a Borchers triple
relative to W.

In view of this theorem, we may apply modular theory to the warped triple. We
shall show next that the corresponding modular objects coincide with the original
ones. To this end we need the following technical lemma.

Lemma 3.4 Let (R, U, Ω) be a Borchers triple relative to W and let S = J∆1/2

be the corresponding Tomita conjugation given by the closure of the map

SA Ω = A∗ Ω , A ∈ R .

Then the subdomain R∞ Ω is a core for S.
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Proof. Let R ∈ R and let fn be a sequence of real test functions with support in W
such that in the sense of strong convergence limn R(fn) Ω = R Ω, cf. relation (3.1)
and the remarks thereafter. Since R(fn) ∈ R∞ ⊂ R and

lim
n

SR(fn) Ω = lim
n

R(fn)∗ Ω = lim
n

R∗(fn) Ω = R∗ Ω = SRΩ ,

the conclusion follows, because RΩ is a core for S by definition. �

We are now in a position to establish the invariance of the modular objects of
Borchers triples under the warping procedure.

Theorem 3.5 Let (R, U, Ω) be a Borchers triple relative to W with modular ob-
jects ∆, J , and let Q be a W–compatible matrix. Then the modular objects ∆Q, JQ

associated with the warped triple (RQ, U, Ω) coincide with those of the original
triple, i.e.

∆Q = ∆, JQ = J .

Proof. Let SQ be the Tomita conjugation associated with the warped triple
(RQ, U, Ω) and let S be the Tomita conjugation associated with (R, U, Ω). Since
AQ ∈ RQ for A ∈ R∞, equation (2.7) and Lemma 2.2 imply

SQ AΩ = SQ AQΩ = (AQ)∗ Ω = (A∗)Q Ω = A∗ Ω = SAΩ .

According to the preceding lemma, R∞Ω is a core for S, hence SQ ⊃ S. By
the Tomita–Takesaki theory [30, 31], the adjoint SQ

∗ of SQ is the Tomita con-
jugation associated with ((RQ)′, U, Ω), and similarly S∗ is the Tomita conjuga-
tion associated with (R′, U, Ω). It was shown in the proof of Theorem 3.3 that
(R′)−Q ⊂ (RQ)′. Thus, as A′

−Q ∈ R′
−Q for A′ ∈ R′∞, one obtains by another

application of equation (2.7) and Lemma 2.2

SQ
∗ A′ Ω = SQ

∗ A′
−Q Ω = (A′

−Q)∗ Ω = (A′ ∗)−Q Ω = A′ ∗ Ω = S∗ A′ Ω .

By the preceding lemma R′∞ Ω is a core for S∗, hence SQ
∗ ⊃ S∗ and consequently

S ⊃ SQ, since both conjugations are closed operators. Thus SQ = S and, by the
uniqueness of the polar decomposition, the desired conclusion follows. �

An immediate consequence of this theorem is the observation that

RQ
′ = R′

−Q . (3.2)

Indeed, Theorem 3.2 and Proposition 2.9 imply JRQJ = (JRJ)−jQj and it is also
straightforward to verify that jQj = Q for any W–admissible matrix Q. Since
J = JQ, the asserted equation then follows from Tomita–Takesaki theory.

Let us discuss now the physical significance of these findings. As was pointed
out in [3], Theorem 3.2 allows one to use the Borchers triple (R, U, Ω) as a building
block for the construction of a quantum field theory in two spacetime dimensions.
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Identifying the cone W ⊂ R2 defined above with the corresponding wedge shaped
region in two–dimensional Minkowski space, one interprets A(W)

.
= R as the

algebra generated by observables which are localized in W. Moreover, noticing
that the transformations ϑ(t), t ∈ R, and j introduced in Theorem 3.2 have the
geometrical meaning of Lorentz boosts and spacetime reflection, respectively, one
can consistently extend the representation U of the translations R

2 to a continuous
(anti)unitary representation of the proper Poincaré group P+. It is given by

U(λ)
.
= U(x)Jσ∆it , λ = (x, jσϑ(t)) ∈ P+ ,

where x ∈ R2, t ∈ R and σ ∈ {0, 1}. Thus J represents the PCT–operator. With
the help of this representation one can define the algebras generated by observables
in the transformed wedge regions λW, λ ∈ P+ by setting

A(λW)
.
= U(λ)RU(λ)−1 , λ ∈ P+ .

This definition is consistent, since the stability group of the wedge W in P+ con-
sists of the boosts ϑ(t), t ∈ R, whose corresponding automorphic action leaves the
algebra R invariant according to Tomita–Takesaki theory. The resulting assign-
ment W. 7→ A(W.) of wedge regions to algebras defines a net (pre–cosheaf) on
R2. It is Poincaré covariant by construction and causal. In fact, since j maps the
wedge W onto its spacelike complement W ′ = −W, one has

A(W ′) = U(j)A(W)U(j)−1 = JRJ = R′ = A(W)′ ,

where the third equality follows from Tomita–Takesaki theory. So the observables
in spacelike separated wedges commute, in accordance with the principle of Ein-
stein causality. In this way any Borchers triple defines a relativistic quantum field
theory in two spacetime dimensions, cf. [3] for more details.

The upshot of these considerations is the insight that, as a consequence of
the preceding three theorems, the warped triples (RQ, U, Ω) generate in the same
manner another causal and covariant net W. 7→ AQ(W.) by setting

AQ(λW)
.
= U(λ)RQU(λ)−1 , λ ∈ P+ .

Thus the warping procedure provides a tool for the consistent deformation of two–
dimensional quantum field theories without changing the underlying representation
of the Poincaré group. We shall further elaborate on this observation in the next
section.

4 Warped Convolutions in Quantum Field Theory

In this section we examine applications of the warping procedure to relativistic
quantum field theories in more than two spacetime dimensions. Thus we interpret
Rn, n > 2, as Minkowski space equipped with the standard metric fixed by the
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Lorentz product, cf. footnote 5. The identity component of its isometry group,
the Poincaré group, is the semidirect product P↑

+ = Rn ⋊ L↑
+ of the spacetime

translations Rn and the proper orthochronous Lorentz transformations L↑
+.

In a manner similar to the preceding section, we describe the theories in the
algebraic setting of local quantum physics [20] by a qualified version of the concept
of Borchers triple. Additional constraints arise since, on the one hand, the group
generated by the translations, along with the boosts and reflection emerging from
the modular structure of the triple, does not act transitively on the set of wedge
regions in R

n if n > 2. The smallest subgroup of the Poincaré group which fulfills
this condition is P↑

+. So one needs from the outset an action of this group on
the underlying algebra R, which one interprets again as the algebra of observables
localized in the given wedge region W .

= {x = (x0, x1, . . . , xn−1) ∈ Rn : x1 ≥ |x0|}.
On the other hand, one must ensure that this action is consistent with the principle
of Einstein causality, according to which observables in spacelike separated regions
must commute. The resulting consistency conditions can be expressed in terms
of the triple in an evident manner, cf. [2, Proposition 7.3.22]. They lead to the
concept of a causal Borchers triple.

Definition 4.1 A causal Borchers triple (R, U, Ω) relative to W consists of

(a) a von Neumann algebra R ⊂ B(H),

(b) a weakly continuous unitary representation U of P↑
+ such that, λ ∈ P↑

+,

U(λ)RU(λ)−1 ⊂ R if λW ⊂ W ,

U(λ)RU(λ)−1 ⊂ R′ if λW ⊂ W ′,

and the spectrum of the abelian subgroup U ↾ Rn of the spacetime translations
is contained in the closed forward lightcone V+,

(c) and a unit vector Ω ∈ H, describing the vacuum, which is invariant under
the action of U and is cyclic and separating for R.

Remark In two spacetime dimensions any Borchers triple determines a causal
Borchers triple by the modular construction in the preceding section. As there is no
element in P↑

+ which maps the wedge W into its spacelike (causal) complement W ′,
the second constraint in condition (b) is trivially satisfied in this case. In order to
flip the wedge one needs the spacetime reflection j, which is an element of P+ ⊃ P↑

+.
As we have seen, its corresponding action on R is consistent with Einstein causality
as a consequence of modular theory. In higher dimensions one either has to posit
causality from the outset, as we do, or one has to impose additional constraints
on the modular structure of the triple which imply it, cf. [4, 5, 7, 10, 19].

With the above input one can define the algebras corresponding to arbitrary
regions in Rn in a straightforward manner, which we briefly recall. Making use of

24



the fact that P↑
+ acts transitively on the wedge regions, one begins with the wedge

algebras by setting

A(λW)
.
= U(λ)RU(λ)−1 , λ ∈ P↑

+ . (4.1)

This definition is consistent, since λ1W = λ2W implies that the transformation
λ−1

2 λ1 is an element of the stability group of W, and R is stable under the adjoint
action of the corresponding unitary operators according to the first part of condi-
tion (b). Similarly, if λ1W ⊂ λ2W, it follows that U(λ−1

2 λ1)RU(λ−1
2 λ1)

−1 ⊂ R,
hence A(λ1W) ⊂ A(λ2W). Thus the family of wedge algebras complies with
the condition of isotony. The wedge algebras also transform covariantly under
the adjoint action of the representation U by their very definition. Moreover, if
λ1W ⊂ (λ2W)′, then U(λ−1

2 λ1)RU(λ−1
2 λ1)

−1 ⊂ R′ according to the second part of
condition (b). Hence A(λ1W) ⊂ A(λ2W)′ in accordance with Einstein causality.
The algebras corresponding to arbitrary causally closed convex regions O ⊂ R

n

are determined from the wedge algebras A(W·) by setting A(O) =
⋂

W·⊃O A(W·).
It is apparent that the resulting assignment O 7→ A(O) inherits the structure of
a causal and covariant net on Rn, i.e. of a local quantum theory [20]. It should
be noted, however, that within the present general framework the algebras corre-
sponding to bounded regions may happen to be trivial. We shall comment on the
physical significance of this possibility at the end of this section.

We now want to use our warping procedure to deform causal Borchers triples.
Additional constraints on the underlying skew symmetric matrices arise due to the
extra conditions imposed on such triples. In fact, Q must have the following form
with respect to the coordinates chosen in the specification of the wedge W ⊂ Rn:

Q
.
=





0 ζ 0 · · · 0
ζ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




(4.2)

for fixed ζ ≥ 0. In the special but physically most interesting case of n = 4
dimensions, one can admit matrices of the more general form

Q
.
=





0 ζ 0 0
ζ 0 0 0
0 0 0 η
0 0 −η 0





for fixed ζ ≥ 0, η ∈ R. Note that these matrices are skew symmetric with respect
to the Lorentz product. The following facts pointed out in [17] are crucial for
the consistent deformation of the triples and, in turn, determine the choice of the
admissible matrices Q [17, Lemma 2].

25



(i) Q V+ ⊂ W.

(ii) Let λ = (x, Λ) ∈ P↑
+ be such that λW ⊂ W. Then ΛQΛT = Q.

(iii) Let λ = (x, Λ)∈P↑
+ be such that λW⊂W ′. Then ΛQΛT =−Q.

Any matrix Q with these properties is said to be W–admissible (qualifying the
notion of W–compatibility introduced in the preceding section).

Given a causal Borchers triple (R, U, Ω) relative to W, we proceed as in the
preceding section and define for fixed W–admissible matrix Q the warped von
Neumann algebra

RQ
.
= {AQ : A ∈ R∞}′′ .

The corresponding warped triple (RQ, U, Ω) is again a causal Borchers triple. For
the proof of this fact we make use of Proposition 2.9, according to which

U(λ)AQU(λ)−1 = (U(λ)AU(λ)−1)ΛQΛT , λ = (x, Λ) ∈ P↑
+ ,

for all A ∈ C∞. Taking into account properties (ii) and (iii) of Q given above, we
conclude that

U(λ)RQ U(λ)−1 = (U(λ)RU(λ)−1)Q ⊂ RQ if λW ⊂ W ,

U(λ)RQ U(λ)−1 = (U(λ)RU(λ)−1)−Q ⊂ (R′)−Q if λW ⊂ W ′ .

But from equation (3.2) one has (R′)−Q = (RQ)′; hence the warped triple satisfies
condition (b) in Definition 4.1. In the proof of Theorem 3.3, it was shown that Ω
is cyclic and separating for RQ, so the triple also complies with condition (c).

Theorem 4.2 Let (R, U, Ω) be a causal Borchers triple relative to W and let Q
be a W–admissible matrix. The corresponding warped triple (RQ, U, Ω) is again a
causal Borchers triple relative to W.

So the deformations induced by the warped convolutions are consistent with the
basic principles of local quantum physics. It is noteworthy that also certain more
specific features persist under these deformations, such as the physically signifi-
cant property of wedge duality. This property can be encoded into a maximality
condition on the Borchers triple, which implies that the underlying algebra cannot
be enlarged without coming into conflict with causality.

Definition 4.3 Let (R, U, Ω) be a causal Borchers triple relative to W. The triple
is said to be maximally causal if U(λ)RU(λ)−1 = R′ for any λ ∈ P↑

+ such that
λW = W ′.

It immediately follows from the definition of the wedge algebras that, under these
circumstances, A(W·

′) = A(W·)
′ for all wedges W·, i.e. wedge duality obtains.
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Proposition 4.4 Let (R, U, Ω) be a maximally causal Borchers triple relative to
W and let Q be a W–admissible matrix. Then the corresponding warped Borchers
triple (RQ, U, Ω) is also maximally causal.

Proof. Let λ ∈ P↑
+ with λW = W ′. Then property (iii) of the W–admissible

matrix Q, Proposition 2.9 and the maximality condition imply that

U(λ)RQ U(λ)−1 = (U(λ)RU(λ)−1)−Q = R′
−Q .

Equation (3.2) completes the proof. �

Let us turn now to the question whether the deformed Borchers triples generate
new theories. It is apparent that equivalent triples, as defined below, give rise to
isomorphic nets of observable algebras and therefore must be identified.

Definition 4.5 Let (R1, U1, Ω1) and (R2, U2, Ω2) be two causal Borchers triples.
The triples are equivalent if there exists an isometry V : H1 → H2 between the
underlying Hilbert spaces such that V R1 = R2V , V U1(λ) = U2(λ)V for all λ ∈ P↑

+,
and V Ω1 = Ω2.

Note that the algebras encountered in Borchers triples are generically isomorphic
to the unique hyperfinite factor of type III1 and hence to each other. Thus the
nontrivial requirement in the definition is the condition that the isometry V inter-
twines, besides the algebras, the respective representations of the Poincaré group.

Although one may expect that the warped Borchers triples are generally in-
equivalent to the original ones, there does not yet exist an argument to that effect.
It has been shown in [13,17] that in theories describing massive particles the elastic
scattering matrix changes under these deformations, thereby providing a rather in-
direct proof that the respective Borchers triples must be inequivalent. We present
here an alternative argument, covering a large family of theories in more than two
spacetime dimensions. It is based on the following lemma, whose proof is given
in the appendix. There we also comment on the additional physically meaningful
spectral constraint on the translations made in the hypothesis.

Lemma 4.6 Let (R, U, Ω) be a causal Borchers triple relative to W ⊂ Rn, n ≥ 3,
such that sp U ↾ Rn contains some point in the interior of V+ and let Q 6= 0 be a
W–admissible matrix of the generic form (4.2). Then Ω is cyclic for at most one of
the algebras

⋂
λ∈N αλ(R) and

⋂
λ∈N αλ(RQ), where N is any given neighborhood

of the identity in P↑
+.

The following observation about the relation between Borchers triples and their
warped descendants is an immediate consequence of this result.
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Proposition 4.7 Let (R, U, Ω) be a causal Borchers triple relative to W ⊂ Rn,
n ≥ 3, such that sp U ↾ Rn contains some point in the interior of V+ and let Ω
be cyclic for

⋂
λ∈N αλ(R) for some neighborhood N of the identity in P↑

+. Then
(RQ, U, Ω) and (R, U, Ω) are inequivalent for any W–admissible matrix Q 6= 0 of
the generic form (4.2).

Proof. Let V be some unitary operator which intertwines the two triples. Then
V

⋂
λ∈N αλ(R) V −1 =

⋂
λ∈N αλ(V RV −1) =

⋂
λ∈N αλ(RQ). Hence Ω = V Ω is

cyclic for the latter algebra as well, in conflict with the preceding lemma. �

In the familiar examples of quantum field theories which have been rigorously
constructed so far, such as (generalized) free field theories in physical spacetime
and interacting field theories in lower dimensions [16], the vacuum Ω is known
to be cyclic for the algebras affiliated with compact spacetime regions (Reeh–
Schlieder property). Thus, applying the warping procedure to the corresponding
Borchers triples, one ends up with inequivalent, i.e. new theories. However, the
local algebras in the deformed theories no longer have the Reeh–Schlieder property,
according to the preceding lemma. In fact, even for the algebras affiliated with
pointed spacelike cones, which are of relevance in gauge theory [8], Ω is not cyclic.
Thus in more than two spacetime dimensions the warped algebras can, in general,
not be interpreted in terms of some underlying point fields.

Yet, as was pointed out in [13], the warped theories admit a meaningful physical
interpretation with respect to noncommutative Minkowski space (Moyal space).
In fact, the first examples of such theories appeared in that setting [17]. We
recall that noncommutative Minkowski space is described by coordinate operators
Xµ satisfying the commutation relations [Xµ, Xν ] = i θµν 1, where θµν = −θνµ

are real constants, µ, ν = 0, 1, . . . , n − 1. It is straightforward to verify that
in more than two dimensions there always exist certain lightlike coordinates X±

which commute and thus can be simultaneously diagonalized. Hence it should
be possible to localize fields and observables with respect to these coordinates,
thereby dislocalizing them in the remaining ones. In particular, the wedges W
considered here are possible localization regions in noncommutative Minkowski
space, whereas bounded regions and pointed spacelike cones are not. On the basis
of this interpretation, the algebras corresponding to the latter regions are expected
to be trivial, in line with the preceding lemma. Now, apart from the wedges, there
are other cylindrical regions (such as the intersections of opposite wedges) which
are possible localization regions. It is therefore an intriguing question whether
the corresponding algebras in the warped theories are nontrivial. An affirmative
answer would support their interpretation in terms of noncommutative Minkowski
space. We hope to return to this problem elsewhere.
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5 Conclusions

In this investigation we have clarified the relation between the warped convolution
of C∗–dynamical systems, proposed in [13], and the strict deformation of such sys-
tems, established by Rieffel [28]. It turned out that, for fixed deformation matrix
Q, the warped convolution induces a faithful covariant representation of the cor-
responding Rieffel algebra, if the original dynamical system is given in a faithful
covariant representation. Thus, from this point of view, the warped convolution
provides little new information. Yet, whereas the Rieffel deformations were intro-
duced for the purpose of quantizing classical systems with Poisson bracket given
by a fixed Q, warped convolutions were conceived for the deformation of quantum
field theories. Within the latter framework one must deal simultaneously with a
multitude of different deformation matrices Q and establish relations between the
resulting operators. The warping procedure is more appropriate in this context,
since all warped deformations of a given dynamical system are concretely presented
in a single Hilbert space, irrespective of the choice of Q.

For the discussion of the field theoretic aspects it has proven to be convenient
to make use of the concept of causal Borchers triples (R, U, Ω). The algebras of
observables attached to arbitrary regions in Minkowski space can be reconstructed
from any such triple, thereby specifying a covariant and causal quantum theory.
Within this setting the problem of constructing a theory thus presents itself as
follows. One first has to devise a continuous unitary representation U of the
Poincaré group on some Hilbert space which satisfies the relativistic spectrum
condition with vacuum vector Ω. This task can be accomplished, e.g., by specifying
the stable particle content of the theory and performing the standard Fock space
construction. In a second step one must exhibit a von Neumann algebra R on this
space satisfying certain specific compatibility conditions with respect to the action
of U , which allow one to interpret R as an algebra of observables localized in a
given wedge region of Minkowski space. It should be noted that the nets of local
observable algebras appearing in any quantum field theory can be realized in this
way.

Disregarding systems with an unreasonably large number of local degrees of
freedom, the algebraic structure of R is known to be model independent, i.e. the
algebras corresponding to different theories are isomorphic [6]. One may thus take
as prototype the von Neumann algebra R0 generated by free (non–interacting)
fields on Fock space which are smeared with test functions having support in the
given wedge region. Despite this concrete setting, the problem of identifying other
proper examples of such algebras R is notoriously difficult. The strategy pursued
in the present investigation is based on the general idea of deforming a given causal
Borchers triple, such as (R0, U, Ω), without changing the representation U . The
warping procedure provides a consistent method to that effect. It leads to a family
of new examples of causal Borchers triples in any number of spacetime dimensions.
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However, the deformations of Borchers triples obtained by the warping proce-
dure are rather special and of limited physical interest. It therefore seems worth-
while to fathom the potential of the general idea underlying this construction.
Since the representation U of P↑

+ induces the pertinent constraints on the admissi-
ble algebras R, one may try to generalize the formula for the warped deformations
by the ansatz

A
.
=

∫∫
dλ dλ′ K(λ, λ′) αλλ′(A0) L(λ, λ′) , A0 ∈ R0 ,

where dλ denotes the Haar measure on P↑
+ (or a subgroup thereof) and K, L

are suitable operator valued kernels. The consistency conditions on the algebra R
generated by the deformed operators can then be re-expressed in terms of transfor-
mation properties of these kernels under the adjoint action of the representation U .

In two spacetime dimensions these constraints simplify considerably. There it
suffices if the kernels K, L transform covariantly under the adjoint action of the
unitary representation U of P↑

+ and Ω is cyclic and separating for the resulting
deformed von Neumann algebra R. One may then proceed as in Section 3 and
extend the representation U to a representation of P+ by adding to it the modular
conjugation associated with (R, Ω) which can be interpreted as PCT–operator.
The algebras corresponding to arbitrary wedges can be obtained from R by the
adjoint action of the resulting (anti)unitary representation of P+. Indeed, there is
evidence that a large family of integrable models on two–dimensional Minkowski
space, considered by one of us, can be subsumed in this manner [24, 25].

The prospect of finding other interesting deformations of this kind also in higher
spacetime dimensions seems promising. Moreover, the method can also be trans-
ferred to quantum field theories on curved spacetimes having a sufficiently large
isometry group [14]. Thus the algebraic methods presented here shed new light on
the yet unsolved constructive problems in relativistic quantum field theory.

Appendix

We give here the proof of Lemma 4.6, which concludes that, given any neigh-
borhood N of the identity in P↑

+, Ω is cyclic for at most one of the algebras⋂
λ∈N αλ(R) and

⋂
λ∈N αλ(RQ). Moreover, we comment on the significance of

the spectral constraint made in the hypothesis of the lemma.

We begin by noting that it suffices to establish the assertion for arbitrarily
small neighborhoods N of the identity in P↑

+; for it then holds for all bigger
neighborhoods as well. In particular, one may assume that λ0 Nλ−1

0 = N , where
λ0 ∈ P↑

+ is a rotation by π which maps W onto W ′. Assume now that Ω is
cyclic for S .

=
⋂

λ∈N αλ(R) ⊂ R and let A ∈ S ⋂ C∞. Then for any λ ∈ N
one has αλ−1(A) ∈ R∞, so the warped operators αλ−1(A)Q are well–defined and
αλ(αλ−1(A)Q) ∈ αλ(RQ). By Proposition 2.9 αλ(αλ−1(A)Q) = AΛQΛT , where Λ is
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the image of λ under the canonical homomorphism mapping P↑
+ onto L↑

+. Hence
AΛQΛT ∈ αλ(RQ), λ ∈ N .

Assume now, for a reductio ad absurdum, that Ω is also cyclic for
⋂

λ∈N αλ(RQ).
Then, since

( ∨

λ∈N

αλ(RQ)
)′

=
⋂

λ∈N

αλ(RQ
′) ⊃

⋂

λ∈N

αλ(αλ0
(RQ)) = αλ0

( ⋂

λ∈N0

αλ(RQ)
)
,

where the inclusion obtains because (RQ, U, Ω) is a causal Borchers triple, one
concludes that Ω is separating for

∨
λ∈N αλ(RQ). But equation (2.7) entails

AΛQΛT Ω = AQΩ, and consequently AΛQΛT = AQ, λ ∈ N . Proposition 2.11 then
yields AΛQΛT−Q = A = AQ−ΛQΛT , λ ∈ N . By explicit computation one finds that
the sums of matrices of the form ΛQΛT − Q, λ ∈ N , include all multiples of Q.
Hence AmQ = A, m ∈ Z, by another application of Proposition 2.11. The same
is true for the smooth operators A′ ∈ T .

= αλ0
(S) ⊂ αλ0

(R) ⊂ R′, as one sees by
applying again Proposition 2.9.

Pick now an arbitrary compact subset Γ in the interior of the forward lightcone
V+, so Q Γ is a compact subset in the interior of W. Hence for any given x, y ∈ Rn

and sufficiently large m ∈ N, the wedges W + x + m Qu and W ′ + y − m Qv lie
spacelike to each other for all u ∈ Γ and v ∈ V+. As explained in Section 4, one
therefore has for any A ∈ R, A′ ∈ R′, the equality [αx+m Qu(A), αy−m Qv(A

′)] = 0.
Now let A ∈ S ⋂ C∞, A′ ∈ T ⋂ C∞, let Φ be any vector with spectral support with
respect to U ↾ Rn contained in Γ, and let Ψ be any other vector with compact
spectral support. According to the preceding step and Proposition 2.9 one has
αx(A) = αx(AmQ) = (αx(A))mQ and similarly αy(A

′) = (αy(A
′))−mQ. So one

obtains by the same line of arguments as in the proof of Proposition 2.10,

〈Φ, αx(A) αy(A
′) Ψ〉 = lim

m→∞
〈Φ, (αx(A))mQ (αy(A

′))−mQ Ψ〉
= lim

m→∞
〈Φ, (αy(A

′))−mQ (αx(A))mQ Ψ〉 = 〈Φ, αy(A
′) αx(A) Ψ〉 ,

where in the second equality the support properties of Φ and the above commu-
tation properties of A, A′ have been used. Thus, varying Φ, Ψ within the above
limitations, one arrives at

E(Γ) [αx(A), αy(A
′)] = 0 for x, y ∈ R

n ,

where E( · ) denotes the spectral resolution of U ↾ Rn.

This equality has been established for A ∈ S ⋂ C∞ and A′ ∈ T ⋂ C∞. But if N
is sufficiently small, the algebra S is mapped into itself by all translations in the
open convex cone

⋂
λ∈N ΛW; appealing to the discussion following relation (3.1)

allows one to conclude that S ⋂ C∞ is weakly dense in S and, similarly, T ⋂ C∞

is weakly dense in T . So the equality holds for all A ∈ S and A′ ∈ T . Moreover,
for any u, v ∈ Rn there is a w ∈ Rn such that αw(T ) ⊃ αu(T )

∨
αv(T ). (This

follows from the the Poincaré covariance discussed in Section 4 and the geometry
of wedge regions). Hence E(Γ) [A, T ] = 0 for A ∈ S and T ∈ ∨

y∈Rn αy(T ).
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Since Ω is cyclic for S it is also cyclic for T = αλ0
(S). The spectral condition

on U ↾ Rn therefore implies that the elements of
⋂

y∈Rn αy(T )′ are invariant under
translations. In particular U(x) ∈ ∨

y∈Rn αy(T ), x ∈ Rn, cf. [1, Theorem 4.6].
Thus E(Γ) [A, U(x)] = 0, x ∈ Rn, and consequently E(Γ) AΩ = 0, A ∈ S. It is
then clear that E(Γ) = 0 for any compact subset Γ in the interior of V+. So the
spectrum of U ↾ R

n is confined to the boundary of the lightcone V+, i.e. there is
no spectral point in its interior, contradicting the hypothesis of the lemma. This
completes the proof of the lemma.

Finally, let us discuss the significance of the assumption that the spectrum
of U ↾ Rn intersects the interior of V+. As a matter of fact, disregarding the
trivial case sp U = {0}, this input is a consequence of the additivity of the energy–
momentum spectrum, which can be established in the present setting if Ω is (apart
from a phase) the only unit vector in the underlying Hilbert space which is invariant
under translations [20, Chapter II.5.4]. The possibility that sp U consists of the
boundary of V+ (and thus is not additive) can only be realized in theories where
the Lorentz symmetry is spontaneously broken. With the help of one–dimensional
chiral fields which one assigns to lightrays, one can manufacture such examples,
and these are stable under the warping procedure. Since these examples seem to
be merely of academic interest, we do not present them here.
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